SIES COLLEGE OF ARTS, SCIENCE AND COMMERCE Sion (West), Mumbai – 400022 (Autonomous)

> Faculty: Science Program: M.Sc.

Subject: BIOTECHNOLOGY

Academic Year: 2023 - 2024

M.Sc. Program

Credit Based Semester and Grading Syllabi approved by Board of Studies in Biotechnology to be brought into effect from June 2023.

PREAMBLE

Biotechnology, broadly defined, includes any technique that uses living organisms, or parts of such organisms, to make or modify products, to improve plants or animals, or to develop microorganisms for specific use. The interdisciplinary nature of biotechnology integrates living systems including animal, plant and microbes and their studies from molecular biology to cell biology, from biochemistry to biophysics, from genetic engineering to stem cell research, from bioinformatics to genomics-proteomics, from environmental biology to biodiversity, from microbiology to bioprocess engineering, from bioremediation to material transformation and so on.

Biotechnology is the science of today and tomorrow. It has applications in all major service sectors. i.e. health, agriculture, industry, environment etc. Biotechnology as an application science has taken firm footing in many countries, abroad where a number of transgenic crops, genetically modified food and recombinant therapeutic molecules for human and animal health are available in the market. Biotechnology as a science of service to human society is yet to make inroads in India

With the advent of the World Wide Web in the early nineties and its subsequent growth, the latest research trends have become accessible from drawing rooms across the globe. This acted as a positive feedback mechanism in increasing the pace of research in all fields including Chemical Engineering and Bio-technology. This was the motivation for an in depth analysis of what is actually required for today's technology. It is also important to take advantage of the freely available software to enhance the quality and quantity of material that can be covered in the class room.

This restructured syllabus is therefore intended to combine the principles of physical, chemical and biological sciences along with developing advanced technology. The postgraduate curriculum is prepared to impart primarily basic knowledge of the respective subject from all possible aspects. In addition, students will be trained to apply this knowledge particularly in day-to-day applications of biotechnology and hence get a flavor of research

PROGRAM OUTCOMES

The expected graduate attributes are directed towards the following:

- Applying the knowledge of various courses learned under the program to break down complex problems to simple components by designing processes for problem solving
- Utilizing the acquired contextual knowledge in an interdisciplinary framework. Integrating research-based knowledge and research-based methods involving problem definition, analysis and interpretation of data followed by its consolidation to arrive at valid conclusions
- Facilitating to write and document effectively; make crisp presentations and reports and convey the message/ instructions/findings clearly
- Equipping to select, create and apply the appropriate tools and techniques through electronic media for the purpose of understanding and analyzing data and drawing inference keeping in mind its limitations and disadvantages
- Understanding the need for sustainable development and concern for environmental issues
- Applying the acquired contextual knowledge in assessing public health and safety; addressing gender, ethnic and environmental issues in addition to performing with decisive responsibility.

PROGRAM SPECIFIC OUTCOMES

The program has been designed to expose the students to the latest developments in the areas of diagnostics, therapeutic techniques and instrumentation. This program is aimed at empowering students for a career in research and also to provide trained manpower for the fast-growing Biotech companies.

A Postgraduate student upon completion of this program is expected to gain the following attributes:

- Competence for research and innovation in the field of Biotechnology
- Design and execute experiments applying the concepts learnt and thereby being able to translate theoretical knowledge to practical knowledge
- Prepare, plan and execute a research project independently.
- Critically evaluate and interpret results

Semester I

Course Type	Course Title	Credits	Lectures (Hrs.)/ week
Major 1	Biochemistry I	4	4
Major 2	Molecular Biology I	4	4
Major 1 Practical	Biochemistry I practical	2	
Major 2 Practical	Molecular Biology I practical	2	
Major	IPR	2	2
Elective	Biochemical and Biophysical Techniques	3	3
Elective Practical	Biochemical and Biophysical Techniques Practical	1	
Research Methodology	Research Methodology	4	4
Total		22	

Semester II

Course Type	Course Title	Credits	Lectures (Hrs.)/ week
Major 1	Immunology I	4	4
Major 2	Molecular Biology II	4	4
Major 1 Practical	Immunology I practical	2	
Major 2 Practical	Molecular Biology II practical	2	
Major	Regulatory affairs	2	2
Elective	Bioprocess technology	3	3
Elective Practical	Bioprocess technology practical	1	
OJT	OJT	4	4
Total		22	

SEMESTER 1

COURSE CODE	TITLE	CREDITS	LECTURES
	BIOCHEMISTRY I	4	60
Course	On successful completion of the course the learner is expected to	demonstrate and	d explain the
Outcomes	understanding of		
Unit I	DNA topology DNA topology: Different forms of DNA – A, B, C, Z and RL form of double helical DNA, triple helix. Nucleic acid binding proteins – Leucine zipper, zinc finger, OB fold, B- barrel, helix turn-helix, helix -loop -helix. Linking number, supercoiling, Topoisomerases.	1	15
Unit II	Metabolism Lipid metabolism: Phospholipids, Cerebrosides and Gangliosides; Alzheimer's disease; Steroid hormones, lipid storage diseases Biosynthesis of purines and pyrimidines with regulation, disorders of Nucleic acid metabolism. Biosynthesis of essential amino acids. Disorders of amino acid metabolism Glycosaminoglycans- Heparin, Chondroitin sulphate, Hyaluronic acid Glycoproteins & Glycolipids, Acidic sugars – ascorbic, glucuronic acid.	1	15
Unit III	Membrane Dynamics Membrane dynamics and transport of solutes across the membrane; States of bilayer lipids, Trans-bilayer Movement of Lipids, Flip-flop diffusion. Measurement of lateral diffusion rates of lipids by fluorescence recovery after photobleaching (FRAP). Hop diffusion of individual lipid molecules; Caveolins and cadherins; Membrane Fusion; Transporter classification system channel (Na+ channel of neurons) and ligand (acetylcholine) mediated transport with examples. ABC transporters and lonophores, Diseases associated with Defective Ion Channels	1	15
Unit IV	Enzymology Enzyme classification, kinetics, Bisubstrate reaction, stable state kinetics, enzyme inhibitions, examples of enzymatic reaction – chymotrypsin, induced fit hypothesis, Catalytic antibodies, Ribozymes Regulatory enzymes and their mode of action and covalent modification of enzymes. Enzyme immobilization techniques, Enzyme biosensors.Basics of	1	15

Enzyme	engineering	(Rational	protein	design	and	
directed e	evolution).					

COURSE CODE	TITLE	CREDITS	LECTURES /WEEK
	MOLECULAR BIOLOGY I	4	60
Course Outcomes	On successful completion of the course, the student will under Learner will be skilled in	stand the basic c	oncepts of
Unit I	Gene evolution and the human genome Human mitochondrial genome, content of the human nuclear genome: cis-trans regulatory elements, Introns, pseudogenes, non-coding RNA genes, tandemly repeated DNA, interspersed genome-wide repeats, Mobile genetic elements, Transposable elements in bacteria (Insertion elements, Transposons, Bacteriophage Mu) and eukaryotes (Plant transposable elements, Yeast transposable element, Drosophila transposable elements, Human retrotransposons) Genome evolution - Acquisition of New Genes by gene duplication: causes of gene duplication, whole genome duplication, smaller duplication, rearrangement of existing genes, Acquisition of New Genes from other species	1	15
Unit II	Mapping techniques Genetic Mapping: DNA markers for genetic mapping, Physical Mapping: Restriction Mapping, Fluorescent in situ hybridization (FISH), Sequence tagged site (STS) mapping, Next Gen sequencing, Human genome project	1	15
Unit III	Transcription Transcription in prokaryotes and eukaryotes, Types of RNA polymerases, Transcription in cell organelles, RNA processing in eukaryotes, Synthesis of eukaryotic mRNAs by RNA polymerase II, Intron splicing. Synthesis and processing of Non-coding RNAs: Transcript elongation and termination by RNA polymerases I and III, Introns in eukaryotic pre-rRNA and pre-tRNA. Processing of Pre RNA. Degradation of mRNAs	1	15
Unit IV	Regulation of gene expression Regulatory proteins: Activators, Enhancers, Insulators, Regulation of Transcription in Prokaryotes: Allostery,	1	15

action at distance, DNA looping, cooperative binding, Examples: <i>lac</i> genes, NtrC & MerR, araBAD operon, regulation of bacteriophage λ , Eukaryotic Gene Regulation: Eukaryotic regulators, Recruitment of protein complexes to genes by activator, Signal integration and Combinatorial control, Transcriptional repressors & its mechanism. Signal transduction and	
repressors & its mechanism, Signal transduction and	
control of transcriptional regulators	

COURSE CODE	TITLE	CREDITS	LECTURES
	BIOCHEMISTRY I – PRACTICAL	2	
	1. Isolation of starch from potato and its estimation by Anthrone method.		
	2. Estimation of Protein by Bradford's method.		
	3. Purification of protein by ammonium sulfate fractionation, dialyze and separate using PAGE		
	4. Study of protein complexes using SDS-PAGE and visualization using silver staining.		
	5. Determination of Lactate Dehydrogenase (LDH) Activity in Blood Serum.		
	6. Extraction of lipids (Essential oils) from the plant materials using clevenger apparatus.		
	7. Saponification value of oils.		
	8. Isolation of cholesterol and lecithin from egg yolks.		
	9. Study of effect of inhibitors on Enzyme activity		
	 Study of Km and Vmax. Titration curve of amino acids 		

COURSE CODE	TITLE	CREDITS	LECTURES
	MOLECULAR BIOLOGY I – PRACTICAL	2	
	 Extraction of genomic DNA from a. bacteria b. blood 		
	2. Perform transformation of bacteria		
	3. Expression of recombinant protein		
	4. Restriction digestion		
	5. Ligation		
	6. Induction of β -Galactosidase in <i>E. coli</i> (and effect of inducers)		
	7. Problems on gene mapping and restriction mapping		
	8. RFLP analysis		

COURSE CODE	TITLE	CREDITS	LECTURES /WEEK
	INTELLECTUAL PROPERTY RIGHTS	2	30
Course Outcomes	On successful completion of the course, the student will under Learner will be skilled in	stand the basic c	oncepts of
Unit I	Introduction to IPR Introduction to intellectual property; types of IP: patents, trademarks, trade secrets, copyright & related rights, industrial design, geographical indications, Biodiversity importance and legislation, International convention and treaties; plant variety protection and farmers rights act, traditional knowledge.	1	15
Unit II	Basics of Patent Eligibility criteria, concept of novelty, concept of inventive step; Patentable and Non-patentable inventions in India and abroad. Patenting systems. Process of Patenting, Types of patent applications, Patent Search, Rights of the patent holder, Assignment and licensing of patents and patent Infringement, case studies. Patent Agent. Biotechnological Inventions as Patentable Subject Matter, Patentability of Biotechnology Inventions in India, Statutory Provisions Regarding Biotechnological Inventions Under the Current Patent Act 1970 (as Amended 2005).	1	15

COURSE CODE	TITLE	CREDITS	LECTURES
ELECTIVE	BIOCHEMICAL AND BIOPHYSICAL TECHNIQUES	3	45
Course Outcomes	On successful completion of the course, the student will under Learner will be skilled in	rstand the basic c	oncepts of
Unit I	Microscopic techniques Confocal microscopy, Scanning Probe microscope, AFM, cryotomy scanning and transmission microscopes, different fixation and staining techniques for EM, freeze-etch and freeze- fracture methods for EM, image processing methods in microscopy, single cell imaging. Environmental	1	15

	SEM and its advantages, Immunoelectron microscopy.		
Unit II	Spectroscopy : Introduction and principle of: fluorescence spectroscopy, Light scattering spectroscopy, Luminometry, circular dichroism, NMR and ESR spectroscopy, Molecular structure determination using X-ray diffraction, X ray crystallography and NMR, Molecular analysis using light scattering, IR, Atomic absorption Spectroscopy.	1	15
Unit III	Other techniques: Introduction, principle and analysis using HPTLC, Capillary electrophoresis, Gel free electrophoresis, Types of PCR, mass spectrometry and LC-MS, GCMS, In–situ gene expression techniques; Microarrays, Flow cytometry. Introduction to cell imaging techniques.	1	15

COURSE CODE	TITLE	CREDITS	LECTURES
ELECTIVE	BIOCHEMICAL AND BIOPHYSICAL TECHNIQUES - PRACTICALS	1	
	1. Polymerase Chain Reaction		
	2. Separation of pigments using column chromatography		
	3. Viscosity of Proteins		
	4. Demonstration and interpretation of NMR, HPLC, GC readouts.		
	5. Separation of sugars using TLC.		
	6. Use of affinity chromatography for purification of antibodies from serum.		
	7. Technique based - Paper presentation.		

COURSE CODE	TITLE	CREDITS	LECTURES
	RESEARCH METHODOLOGY	4	60
Course Outcomes	On successful completion of the course, the student will under Learner will be skilled in	stand the basic c	concepts of
Unit I	Foundations of Research: Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism, deductive and inductive theory. Characteristics of scientific method – Understanding the language of research – Concept, Construct, Definition, Variable. Research and its types The research process: Problem Identification & Formulation – Research Question – Investigation Question –Measurement Issues – Hypothesis – Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic & Importance	1	15
Unit II	Research Design: Concept and Importance in Research – Features of a good research design, The functions of a research design, The theory of causality and the research design, Study designs in quantitative and qualitative research Data Collection : Data and its types, Selecting a method of data collection Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association.	1	15
Unit III	 Sampling - The concept of sampling, Sampling terminology, Principles of sampling, Factors affecting the inferences drawn from a sample, Aims in selecting a sample. Concepts of Statistical Population, Sample, Sampling Frame, Sampling Error, Sample Size, Non-Response. Characteristics of a good sample. Probability Sample – Simple Random Sample, Systematic Sample, Stratified Random Sample & Multi-stage sampling. Determining size of the sample– Practical considerations in sampling and sample size. 	1	15
Unit IV	Research proposal and its contents, Types of research paper, Layout of a Research Paper, Reviewing the		

literature, Methods to search required information effectively, Reference Management Software like Zotero/Mendeley, Software for paper formatting like LaTeX/MS Office. Journals in Life Science, Impact factor of Journals, When and where to publish? Ethical issues related to publishing, Plagiarism and Self-Plagiarism, Software for detection of Plagiarism.	1	15	
---	---	----	--

SEMESTER II

COURSE CODE	TITLE	CREDITS	LECTURES
	IMMUNOLOGY I	4	60
Course	On successful completion of the course, the student will under	stand the basic c	concepts of
Outcomes	Learner will be skilled in		
Unit I	Understanding the Immune system Mechanisms of Innate immune system (pattern recognition receptors, complement system, ADCC) and Adaptive immune system (cells involved, Antigen recognition by B cells and T cells, Effector mechanisms) Cytokines: Properties, Classification, Receptors, Signaling, Cytokine secretion by TH1 and TH2, Cytokine related diseases, Cytokine expression.	1	15
Unit II	Humoral Immunity B cell development: development in Bone marrow, B cell lineages (B1 and B2), Negative regulation of B cells, T dependent and independent responses, Generation of Antibody Diversity: Germ line and Somatic theory, Dreyer and Bennett model, Tonegawa's Bombshell experiment Multigene organization of Ig gene, Variable gene rearrangements, Generation of antibody diversity, Synthesis, assembly, and secretion of immunoglobulins, Antibody engineering, Chimeric antibodies.	1	15
Unit III	Cell mediated immunity T cell Development: Early thymocyte development, positive and negative selection, Differentiation, maturation, Apoptosis. Transplantation: Basis of Graft rejection, clinical manifestation of graft rejection; immunosuppressive therapy; immune tolerance; clinical transplantation. Cancer immunology: Malignant transformation of cells, Cancer induction, Tumor Antigens, Immunosurveillance, tumor evasion, Cancer immunotherapy.	1	15
Unit IV	Diseases of the immune system Hypersensitivity: Classification and types Primary immunodeficiencies: Combined immunodeficiency (Reticular dysgenesis, SCID, BLS, DiGeorge syndrome, Wiskott-Aldrich syndrome, Hyper IgM, Job syndrome), B-cell immunodeficiency (CVID, X linked agammaglobulinemia), Disruption of	1	15

immune regulation (APECED, IPEX), Disruption in
innate immunity (LAD, CGD, CHS)
Autoimmunity: Organ Specific and Systemic
autoimmune diseases

COURSE CODE	TITLE	CREDITS	LECTURES
	MOLECULAR BIOLOGY II	4	60
Course Outcomes	On successful completion of the course, the student will under Learner will be skilled in	stand the basic c	oncepts of
Unit I	Translation Translation in Prokaryotes and Eukaryotes, Inhibitors of translation, Post translational modification:Protein folding, Processing by proteolytic cleavage, Processing by chemical modification and Inteins splicing. Protein targeting and degradation.	1	15
Unit II	Histone modification & Genome activity Chromatin & Nucleosome, Histone & histone variants, Gene silencing by Histone modification, Nucleosome remodeling, Regulatory RNAs in Prokaryotes: sRNAs, Riboswitches, CRISPRs, Regulatory RNAs in eukaryotes: miRNA, siRNA, long non-coding RNAs & their role. Regulation of Genome Activity During Development: Sporulation in <i>Bacillus</i> , Vulva development in <i>Caenorhabditis elegans</i> , Development in <i>Drosophila</i> <i>melanogaster</i>	1	15
Unit III	Model organisms Saccharomyces cerevisiae- Genome, existence of haploid and diploid cells, facilitating genetic analysis, generating mutations in yeast. Arabidopsis- genome life cycle, ease of transformation epigenetics, response to environment. Mus musculus- mouse embryonic development and stem cells, ease of introduction of foreign DNA, epigenetic inheritance.	1	15
Unit IV	DNA Vectors DNA cloning with single-stranded DNA vectors: M13 phages cloning vector, Specialist purpose vectors: M13 based vector for ssDNA, Expression vectors - Vectors for making RNA probes, vectors for maximizing protein synthesis, vectors to facilitate protein purification, vectors to promote protein solubilization, vectors to promote protein	1	15

LITMUS, Pin-point series vectors, BACs, Phage P1	
derived vectors & PACs.	
Cloning in S.cerevisiae: YEPs, YRPs, YCPs, YACs,	
Retrovirus – like vectors, Expression of cloned genes,	
Specialist vectors & Yeast surface display	

COURSE CODE	TITLE	CREDITS	LECTURES
	IMMUNOLOGY I - PRACTICAL	2	
Course	On successful completion of the course, the student will under	stand the basic c	oncepts of
Outcomes	Learner will be skilled in		
	1. DOT-ELISA		
	2. Quantification of antigen using Single Radial		
	Immuno-Diffusion.		
	3. Immuno-diffusion and immune-electrophoresis		
	4. Serum electrophoresis		
	5. Western Blotting		
	6. Demonstration of HLA typing.		
	7. In-vitro demonstration of phagocytosis and		
	calculating phagocytic index.		
	8. Latex bead agglutination / precipitation test for		
	detection of rheumatoid factor (RF)		
	9. Separation of lymphocytes on Ficoll-Histopaque,		
	viability count.		

COURSE CODE	TITLE	CREDITS	LECTURES
	MOLECULAR BIOLOGY II	2	
Course Outcomes	On successful completion of the course, the student will under Learner will be skilled in	rstand the basic of	concepts of
	 Mutagenesis AMES test 		

3. Conjugation	
4. Detection of GMO using PCR	
5. Plasmid DNA extraction and detection using agarose gel electrophoresis	
6. Elution of extracted plasmid from Agarose gel and quantification	
7. Characterization of DNA by Spectrophotometric Assay and Melting Temperature (Tm)	

COURSE CODE	TITLE	CREDITS	LECTURES
	REGULATORY AFFAIRS	2	30
Course	On successful completion of the course, the student will under	stand the basic c	oncepts of
Outcomes	Learner will be skilled in	-	
Unit I	The Concepts of innovator and generic drugs, drug development process. Basic ICH Requirement and ICH topics. Basic regulatory framework with respect to Regulated and Non-regulated market practices and procedures. Regulatory Approval Process Approval processes and timelines involved in Investigational New Drug (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA). Changes to an approved NDA / ANDA. Regulatory authorities and agencies Overview of regulatory authorities of India, United States, European Union, Australia, Japan, Canada (Organization structure and types of applications). Registration of Indian drug product in overseas market Procedure for export of pharmaceutical products, Technical documentation, Drug Master Files (DMF)	1	15
Unit II	Common Technical Document (CTD), electronic Common Technical 163 Document (eCTD), ASEAN Common Technical Document (ACTD)research. CTD-Module 1, 2, 3, 4, 5 (including QOS, quality design concept and bioequivalence). Clinical trials Developing clinical trial protocols, Institutional Review Board / Independent Ethics committee - formation and working procedures, Informed consent process and	1	15

& Monitors, Managing and Monitoring clinical trials,	
Pharmacovigilance - safety monitoring in clinical trials.	

COURSE CODE	TITLE	CREDITS	LECTURES
ELECTIVE	BIOPROCESS TECHNOLOGY	3	45
Course Outcomes	On successful completion of the course, the student will under Learner will be skilled in	stand the basic c	oncepts of
UNIT I	Fermentation Strain improvement for increased yield and other desirable characteristics; Upstream processing: Media formulation; Sterilization, Bioreactor designs; classification of fermenters: Batch, fed batch and continuous; Solid state, surface and submerged fermentation; Conventional fermentation v/s biotransformation; Basics of bioreactor kinetics and mathematical equations regarding bioreactors, scale-up and aeration of bioreactors in detail, Kinetics of microbial growth, substrate utilization and product formation (Batch, Fed- Batch and continuous processes), Scale up concepts with respect to fermenter design and product formation, Gas exchange and mass transfer: O2 transfer, critical oxygen concentration, determining the oxygen uptake rate.	1	15
UNIT II	Applications of enzymes and microbes in fermentation Mechanism of enzyme function and reactions in process techniques; Enzymic bioconversions e.g. starch and sugar conversion processes; High-Fructose Corn Syrup; Interesterified fat; Hydrolyzed protein etc. and their downstream processing; baking by amylases, deoxygenation and desugaring by glucose oxidase, beer mashing and chill proofing; cheese making by proteases and various other enzyme catalytic actions in food processing. Microbes and their use in pickling, producing colours and flavours, alcoholic beverages and acids; Process wastes-whey, molasses, starch substrates and other food wastes for bioconversion to useful products; Bacteriocins from lactic acid bacteria – Production and applications in food preservation.	1	15

UNIT III	Food processing		
	Fermented foods and beverages; Food ingredients and additives prepared by fermentation and their purification; Fermentation as a method of preparing and preserving foods; Food Processing: Ambient-temperature processing, heat processing and processing by removal of heat. Post processing operations: Coating or enrobing, packaging and storage.	1	15

COURSE CODE	TITLE	CREDITS	LECTURES	
ELECTIVE	BIOPROCESS TECHNOLOGY PRACTICAL	1		
Course	On successful completion of the course, the student will understand the basic concepts of			
Outcomes	Learner will be skilled in			
	1. Demonstration of Plackett-Burman design for formulation of fermentation media.			
	2. Pigment production and isolation from a microbial source (yeast, fungi or bacteria).			
	3. Study of enzyme activity of cellulase.			
	4. Immobilization of yeast cells and determination of its invertase activity.			
	5. Detection of different food enzymes by simple tests (amylase, catalase, invertase, papain, pectinase, pepsin).			
	6. Study of pickling process (sauerkraut / pickled cucumbers) with respect to physical, chemical / biochemical and biological changes occurring during the pickling process.			

COURSE CODE	TITLE	CREDITS	LECTURES
OJT	OJT	4	

EVALUATION SCHEME

33 to 50% continuous internal evaluation and remaining at the end of each semester.

References

- 1. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2014). Cellular and molecular immunology E-book. Elsevier Health Sciences.
- Ahmed, F. E. (2002). Detection of genetically modified organisms in foods. TRENDS in Biotechnology, 20(5), 215-223.
- 3. Amarger, N. (2002). Genetically modified bacteria in agriculture. Biochimie, 84(11), 1061-1072.
- 4. Ananthanarayan, R. (1984). Introduction to medical microbiology. Orient Longman Limited
- Bailey, J. E., & Ollis, D. F. (2006). Biochemical engineering fundamentals. New York: McGraw-Hill.Berg, J. M., Stryer, L., & Tymoczko, J. L. (2012). Biochemistry: 7th Edition, W.H.Freeman and company, NY
- 7. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Biochemistry, ; W. H.
- 8. Berne, R. M., & Levy, M. N. (2000). Principles of physiology. Mosby Incorporated.
- 9. Biochemical Calculations, 2nd Ed., (1997) Segel Irvin H., Publisher: John Wiley and Sons, New York.
- 10. Boyer, R., & Boyer, R. (2005). Modern Experimental Biochemistry. Delhi: Pearson Education (Singapore) Pvt. Ltd.
- 11. Campbell, A. M., & Heyer, L. J. (2006). Discovering genomics, proteomics, and bioinformatics. San Francisco, Calif. [u.a.: CSHL Press.
- 12. Conn, E., & Stumpf, P. (2009). Outlines of biochemistry. John Wiley & Sons.
- Daniel, W. W. (1999). Biostatistics: A Foundation for Analysis in the Health Sciences, 7thedR Wiley. New York.
- 14. Davidson, S. S., Meiklejohn, A. P., & Passmore, R. (1960). Human Nutrition and Dietetics. Academic Medicine.
- 15. Delves, P. J., & Roitt, I. M. (1994). Roitt's essential immunology. Oxford, Blackwell Scientific Pub.
- 16. Devlin, R. M., & Withan, F. H. (1988). Plant physiology 4th Ed.
- 17. Devlin, T. M. (Ed.). (2006). Textbook of biochemistry: with clinical correlations.
- 18. Dey, P. M., & Harborne, J. B. (Eds.). (1997). Plant biochemistry. Elsevier
- 19. Diwan, P., & Bharadwaj, A. (Eds.). (2005). The Nanoscope: Encyclopedia of Nanoscience and Nanotechnology Vol: 1,V,VI. Pentagon Press.
- Dubey, R. C. (1999). A text book of biotechnology, Publication, S. Chand and Co., New Delhi.
- El-Mansi, M., Bryce, C. F. A., Dahhou, B., Sanchez, S., Demain, A. L., & Allman, A. R. (2012). Fermentation microbiology and biotechnology.

- 22. Freshney, R. I. Culture of animal cells: a manual of basic technique. Wiley-Liss
- 23. Friedman, H., Klein, T. W., & Friedman, A. L. (1995). Psychoneuroimmunology, stress, and infection. CRC Press
- 24. Gangal, S. (2007). Principles and practice of animal tissue culture. Universities Press.
- 25. Gerstman, B. B. (2014). Basic biostatistics. Jones & Bartlett Publishers.
- 26. Gilbert, S. F., & Barresi, M. J. F. (2018). Developmental biology.8th edn. Sinauer Associates, Inc.
- 27. Godkar, P.B. (2005). Text Book of Medical Biochemistry. Bahalani Publishers.
- 28. Goodsell, D. S. (2004). Bionanotechnology: lessons from nature. John Wiley & Sons.
- Goodwin, T. W., & Mercer, E. I. (1972). Introduction to plant biochemistry (No. 572.82 G6I5).
- 30. Grahame-Smith, D. G., & Aronson, J. K. (2002). Oxford textbook of clinical pharmacology and drug therapy. Oxford: Oxford University Press.
- Granner, D. K., Murray, R. K., Mayes, P. A., & Rodwell, V. W. (1988). Harper's Biochemistry (Vol. 21) 27th edn. Appleton & Lange.
- 32. Gurumani, N. (2005). An Introduction to Biostatistics. 2ndedR. MJP Publishers.
- 33. Guyton, A., & Hall, J. (2006). Textbook of medical physiology, 11th.
- 34. Hall, J. E. (2015). Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences.
- 35. Hamsten. Drug interaction. Kven stockley
- 36. Hatch, R. T. (July 01, 1974). Biochemical engineering, second edition, S. Aiba, A. E. Humphrey, and N. F. Millis, Academic Press, Inc., New York(1973)
- 37. Heldt, H. W., & Piechulla, B. (2004). Plant biochemistry 3rd edn. Elsevier.
- Hudson, L., Hay, F. C., & Hudson, L. (1989). Practical immunology (pp. 348-350). Oxford: Blackwell Scientific Inc. USA
- 39. IGMORIS. (2013). Indian GMO Research Information System.
- 40. Jackson, A.T. (1991). Bioprocess Engineering in Biotechnology. Engelwood Cliffs, Prentice Hall.
- 41. Katzung, B. G., Masters, S. B., & Trevor, A. J. (2012). Basic and Clinical Pharmacology (LANGE Basic Science). McGraw-Hill Education.
- 42. Kindt, T. J., Goldsby, R. A., Osborne, B. A., & Kuby, J. (2007). Kuby immunology. Macmillan.
- 43. Krebs, J. E., Lewin, B., & Goldstein, E. S. (2012). Genes XI, 11th edition. Jones & Bartlett Publishers
- 44. Krishna, D. R., & Klotz, U. (1990). Clinical Pharmacokinetics: A Short Introduction. Springer.
- 45. Kulkarni, S. K. (2015). Nanotechnology: principles and practices (p. 403). Berlin, Germany:Springer.
- 46. Laurence, D. R., Bennet, P. N., & Brown, M. J. (1997). Clinical Pharmacology 8th edition Churchill Livingstone.

- 47. Maniatis, T., Fritsch, E. F., & Sambrook, J. (1982). Molecular cloning: a laboratory manual (Vol. 545). Cold Spring Harbor, NY: Cold spring harbor laboratory.
- 48. Mehra. Drug interaction. Basic Business Publ
- 49. Meneely, P. (2014). Genetic analysis: genes, genomes, and networks in eukaryotes. Oxford University Press.
- 50. Moo-Young, M. (1985). Comprehensive biotechnology: The principles, applications and regulations of biotechnology in industry, agriculture and medicine. Oxford [etc.: Pergamon Press.
- Moore, T. C. (2012). Biochemistry and physiology of plant hormones. Springer Science & Business Media.
- 52. Mount David, W. (2001). Bioinformatics–Sequence and Genome Analysis. CSHL, New York.
- 53. Mu, P., & Plummer, D. T. (1988). Introduction to practical biochemistry. Tata McGraw-Hill Education.
- 54. Nelson, D. L., Lehninger, A. L., & Cox, M. M. (2008). Lehninger principles of biochemistry. 5th ed. Macmillan.
- 55. Norman, G. R., &Streiner, D. L. (2008). Biostatistics: the bare essentials. Hamilton: BC Decker Inc, 3.
- Orten, J. M., Neuhaus, O. W., & Kleiner, I. S. (1975). Human biochemistry (No. 574.192 07). CV Mosby.
- 57. Pal, J. K., & Ghaskadbi, S. S. (2009). Fundamentals of molecular biology. New Delhi: Oxford University Press.
- 58. Palmer, T., & Bonner, P. L. (2007). Enzymes: biochemistry, biotechnology, clinical chemistry. Elsevier.
- 59. Paul, W. E. (2013). Fundamental immunology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
- 60. Payne, G. F., Bringi, V., Prince, C., & Shuler, M. L. (1992). Plant cell and tissue culture in liquid systems (Vol. 13). Munich: Hanser Publishers.
- 61. Pevsner, J. (2003). Bioinformatics and Functional Genomics. Hoboken: John Wiley & Sons
- 62. Prokscha, S. (2006). Practical guide to clinical data management. CRC Press.
- 63. Rastogi, V. B. (2009). Fundamentals of Biostatistics 2Nd Ed. Ane Books Pvt Ltd.
- 64. Remington, J. P. (2006). Remington: the science and practice of pharmacy (Vol. 1). Lippincott Williams & Wilkins.
- 65. Rondel, R. K., Varley, S. A., & Webb, C. F. (Eds.). (2000). Clinical data management. John Wiley & Sons.
- 66. Sadasivam, S. (1996). Biochemical methods. New age international.
- 67. Sadler, T. W. (2011). Langman's medical embryology. Lippincott Williams & Wilkins.
- 68. Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. 4th. Edn. CBS publishers and Distributors

- 69. Sauer, K. (1995). Biochemical spectroscopy. Vol 246 of Methods in Enzymology. San Diego, Calif. USA: Acad. Press.
- Sharon, M., & Sharon, M. (2007). Nano Forms of Carbon and its Applications, Monad Nanotech Pvt. Ltd., Mumbai, India.
- 71. Shortliffe, E. H., & Cimino, J. J. (Eds.). (2013). Biomedical informatics: computer applications in health care and biomedicine. Springer Science & Business Media.
- 72. Shuler, M. L., Kargi, F., & DeLisa, M. (2002). Bioprocess engineering: Basic concepts, 2nd edn. Engelwood Cliffs, Prentice Hall.
- 73. Slack, J. M. (2009). Essential developmental biology. John Wiley & Sons.
- Smyth, M. R. (1998). Analytical Biochemistry: David J. Holme and Hazel Peck, 3rd edn., Longman, Harlow
- 75. Stanbury, P. F., Whitaker, A., & Hall, S. J. (1995). Principles of fermentation technology. Oxford u.a.: Pergamon.
- 76. Swaminathan, M. (1974). Essentials of food and nutrition. Vol. II. Applied aspects. Essentials of food and nutrition. Vol. II. Applied aspects.
- 77. Talwar, G. P., & Gupta, S. K. (Eds.). (2009). A Handbook of practical and clinical immunology. CBS Publishers & Distributors.
- Talwar, G. P., & Srivastava, L. M. (2002). Textbook of biochemistry and human biology. PHI Learning Pvt. Ltd.
- 79. Taylor, R. B. (2011). Medical writing. Springer Fachmedien.
- 80. Tropp, B. E. (2011). Molecular Biology. Jones & Bartlett Publishers.
- 81. Varley, H. (2006). Practical clinical biochemistry.6th edn. Practical clinical biochemistry.
- Voet, D., Voet, J. G., & Pratt, C. W. (2002). Fundamentals of Biochemistry 2002 Update. John Wiley & Sons.
- 83. Walsh, G. (2002). Proteins: biochemistry and biotechnology. John Wiley & Sons.
- 84. Watson, J. D. (2008). Molecular biology of the gene. San Francisco: Pearson education.
- 85. Weaver, R. F., & Wassarman, D. A. (2011). Molecular biology. McGraw Hill Science. USA
- 86. Wilson, K., & Walker, J. (2010). Principles and techniques of practical biochemistry and molecular biology. Cambridge: Cambridge University Press.
- 87. Wilson, M., Kannangara, K., Smith, G., Simmons, M., & Raguse, B. (2002). Nanotechnology: basic science and emerging technologies. CRC Press.
- 88. Zubay, G. (1983). Biochemistry Addison-Wesley. Read Mass, 138-206.
